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We consider here the higher order effect of moderate longitudinal surface curva- 
ture on steady, two-dimensional, incompressible laminar boundary layers. The 
basic partial differential equations for the problem, derived by the method of 
matched asymptotic expansions, are found to possess similarity solutions for a 
family of surface curvatures and pressure gradients. The similarity equations 
obtained by this anaylsis have been solved numerically on a computer, and show 
a definite decrease in skin friction when the surface has convex curvature in all 
cases including zero pressure gradient. Typical velocity profiles and some relevant 
boundary-layer characteristics are tabulated, and a critical comparison with 
previous work is given. 

1. Introduction 
In  the classical boundary-layer theory of Prandtl, the surface curvature has 

no explicit effect on the boundary layer. It is of course crucial in determining the 
inviscid surface velocity distribution, to which the boundary-layer velocity pro- 
file itself should tend towards the outer edge of the layer. But once this distribu- 
tion along the surface is known (either from inviscid theory or from experiment), 
the curvature of the surface is irrelevant to the solution of the classical boundary- 
layer problem. At lower Reynolds numbers, however, the curvature begins to 
influence the boundary layer explicitly, and it is this higher order effect that we 
want to study here. We confine ourselves to steady two-dimensional laminar 
incompressible motion. 

The subject has been dealt with by several workers previously and has been 
rather controversial as their results do not agree. Thus while Tani (1949, 1954) 
andMurphy (1953,1962,1965) conclude that the skin friction will decrease on the 
convex side of the surface because of the curvature (a trend confirmed by the 
present work), Yen & Toba (1961, 1962) arrive at just the opposite conclusion. A 
systematic formulation of the general second-order boundary-layer theory, using 
singular perturbation techniques, has been presented by Van Dyke (1962)) and 
used by him subsequently (1964) to discuss the flow past a parabolic cylinder. 
Here he finds a reduction of skin friction due to convex curvature, which is the 
same trend as Murphy’s results show. However, no systematic general analysis 
of the kind of problem considered by Murphy seems to have been made yet and 
the purpose of this paper is precisely to provide such analysis, and to point out 
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the reasons for the errors and discrepancies in previous work, especially that of 
Murphy and Yen & Toba. 

In  what follows it is assumed that the curvature K is only moderate, meaning 
essentially that its product with the boundary layer thickness S is small. Any 
more general theory (for larger curvatures) would then have to reduce to the case 
considered by us in the limit. Such a more general theory does not seem to exist 
as yet, though claims have been made to include the effect of large curvatures 
(see $5). It is easy to convince oneself that in most aeronautical applications the 
parameter KS is indeed small. However, flight at  high altitude involves lower 
Reynolds numbers and hence leads to larger values of KS. 

In  the following section we review the basic formulation of the problem as 
given by Van Dyke, using singular perturbation techniques. The partial differen- 
tial equations so derived for the higher order problem are then reduced to an 
ordinary differential equation in $ 3  by similarity analysis. It will be found here 
that similarity solutions are possible for a class of surface curvatures and pressure 
gradients which are essentially an extension of the classical Falkner-Skan family. 
In  $4  we present solutions of these equations, obtained numerically on a digital 
computer. These results are compared with other work in $5, which includes a 
brief critique and discussion of the previous analyses. 

2. Formulation of the problem 
In  this section we give a brief resume of the derivation of the basic higher order 

equations, following the treatment of Van Dyke (1962). The Navier-Stokes 
equations for the steady two-dimensional motion of an incompressible viscous 
fluid can be written, in vector non-dimensional form, as 

divU = 0, (2.1) 

(2.2) U.grad U = -grad P- @curl curl U. 
Here U is the fluid velocity divided by the velocity at  upstream infinity (say U*)  
and P is the pressure divided bypU*z; p is the density, and the space co-ordinates 
X are non-dimensionalized by some length L* characteristic of the body in the 
flow. Finally we have written s2 for uIU*L*, which is the reciprocal of the Rey- 
nolds number R, v being the kinematic viscosity. In  boundary-layer theory we 
are concerned with the limit E +  0. 

We take as our boundary conditions 

U .+ U* at upstream infinity, ( 2 . 3 ~ )  
and U = 0 on the surface S, (2.3b) 

where U* is the (constant) velocity vector at infinity and S is the surface past 
which the fluid is flowing. 

Following the usual procedure in the singular Perturbation analysis, we first 
make an outer expansion of our variables in the limit X fixed, E + O ;  thus we 

write u = U,(X)+sU,(X) + ...) (2.4a) 
P = P,(X)+€P,(X)+ .... ( 2 . 4 b )  

It can be shown that this outer flow is irrotational to all orders in E ,  and hence can 
be obtained by solving a potential flow problem to satisfy the outer boundary 
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condition (2.3a) and a suitable ‘inner’ boundary condition, to be determined by 
matching (see below). 

To find an inner limit which will be valid near the surface, it  is convenient first 
to introduce an orthogonal curvilinear co-ordinate system, made up of straight 
lines normal to X and curves parallel to X. We denote distance along the normal 
lines by Y ,  and distance along the other family by X. The inner limit is then 
defined by the process e+ 0 as x = X and y = Yle are fixed, and the inner expan- 
sion of the variables is 

u = uo(x, y) + €.U,(X, y) + . . ., (2 .5a)  

w = “w~(X,y)+e2w,(x, y)+ ... , (2 .56)  

P =Po(x,Y)+~Pl(x,Y)+ * - . .  ( 2 . 5 ~ )  

(We use lower case symbols for inner variables and upper case symbols for outer 
variables.) The equations of motion then give 

and 

3PO - = 0, 
a Y  

(2 .6a)  

(2 .6b)  

( 2 . 6 ~ )  

for the zeroth order quantities; these equations are just the familiar Prandtl 
boundary-layer equations, showing that curvature has no explicit influence t o  
this order. The next order terms give 

(2 .7a )  

( 2 . 7 b )  

( (022)  2 ] - eP1 a2u, ---+-+K y u -+-- +--uovo 
ax ay2 

where K = K(x) is the surface curvature. 

boundary conditions for the inner and outer equations: 
Matching the inner and outer solutions (Van Dyke 1962) gives us the following 

%(X,O) = 0, (2 .8a)  

uo(x, 0 )  = 0 = wo(x, O) ,  (2 .8b)  

%(X, a) = U,(X, O), PO(4 = Pa(X, O), (2.8c) 

(2.8d) 
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Note that while the zeroth-order equations (2.6) are non-linear, the first-order 
equations (2.7) are linear and hence allow superposition (as first noted by Rott 
& Lenard (1959)).  It is thus possible to consider separately the displacement 
effect (which gives rise to the terms U,(X, 0) and Pl(X,  0) in (2 .8f)  and (2.8g)),  and 
the curvature effect (which gives the terms multiplied by K i n  (2.7) and (2 .8)) ,  
and superpose them in the end. Here, we are primarily interested in the curvature 
effects, so we ignore PI and all displacement effects. Eliminating pl with the help 
of (2.7b) and (2.8g),  the two momentum equations (2.7b) and ( 2 . 7 ~ )  can be com- 
bined to obtain 

au, au, au, au, 
u -+v -+u -+v,- 

O ax O ay ax a9 

where U,, = U,(X, 0) is the surface speed from the outer solution. The continuity 

- + - (21, + Kyv,) = 0 ;  (2.9b) 

and the boundary conditions to go with the above equations are, from (2.8e) and 

(2.8f 1 7  u1 = v1 = 0, at  y = 0, (2.10 a )  

and ul(x,y) = -KyUo,, as y-tco. (2.10b) 

The system of relations (2.9) and (2.10) constitute the governing equations for 
first-order boundary-layer flows allowing for longitudinal curvature effects. 

equation ( 2 . 7 ~ )  is au, a 
ax ay 

3. Similarity analysis 
In order to study some specific cases in deta-il and obtain a few standard solu- 

tions, we now seek the conditions under which similarity solutions for the system 
(2.9) and (2.10) exist. Similarity in the higher order system implies similarity also 
for the ordinary boundary-layer system (2.6), which leads to the well-known 
Falkner-Skan flows. One way of obtaining these is by introducing the transformtl- 
tions 

@ o h  Y 1 = (26)+f0(7;)), 

where yk0 is the zeroth inner stream function and fo is a function only of 7;) and not 
of g. When these variables are substituted into (2.6),  it will be found that one can 
get an ordinary differential equation for f onIy if 

d In U,, p = 2- dln 6 = const., U,, = Cxm, m = p / ( 2 - p ) ,  (3.2) 

f t + f o f {  = P(fh2-  I ) ,  (3.3) 

C being an arbitrary constant, and we obtain for f o  the well-known Falkner-Skan 
equation 

where primes denote differentiation with respect to q. 
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For the higher order system, we see from the continuity equation (2.9b) that 
a function $, can be defined such that 

and in analogy with the lower order similarity, we require that 

It is easily shown that similarity is possible only if 
k l h  9)  = (%)+fl(?l). (3.5) 

where k is a constant. It may be pointed out here that there is not necessarily a 
contradiction in prescribing K ( X )  and U,(X, 0 )  independently, because the latter 
is not uniquely determined by the surface under consideration. There is the 
possibility that the velocity distributions (3.2) can be obtained on the surfaces 
(3.6) by placing suitably other bodies or surfaces in the flow. In any case, our 
purpose in solving for similarity flows is to have a standard set of solutions on the 
basis of which approximate methods of solution for arbitrary curvatures and 
pressure gradients can be constructed. 

The surfaces defined by (3.6) are identical with those obtained by Murphy 
(1953), though his analysis is different from ours. This is not surprising for the 
condition for similarity is simply that the new parameter introduced into the 
problem by a consideration of surface curvature, namely the quantity KS, should 
be independent of x for each of the Falkner-Skan flows. This directly leads to the 
requirement (3.6). 

Murphy (1953) has given sketches of some of the surfaces K N x-4, correspond- 
ing to m = 0 in (3.6). For arbitrary values of m, (3.6) is easily integrated in terms 
of the intrinsic variables of the surface; and its Cartesian co-ordinates s,, sg can 
be given in the parametric form 

where ~ , , ~ ( z , a )  =/:(cost, sint) tadt 

can always be reduced, by integration by parts, to the generalized sine and cosine 
integrals of Kreyszig (1953). 

It is clear that for m < 1 the curvature at the leading edge is infinite, but this 
still does not contradict the basic assumption of 'moderate' curvature, which in 
non-dimensional terms means that the product KS (or I C E )  is small. For all these 
surfaces S goes to zero sufficiently fast near the leading edge for KS to be a 
constant, hence it is perfectly consistent to assume it small. However, the present 
analysis does not take account of the so-called leading-edge effect. 

Assuming that the curvature is given by (3.6), the system (2.9) can be reduced, 
with the help of (3.1-6), to the following single differential equation fort,: 

f? + f o K  - 2 P f X  +fX 
2 
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A = limit (y - fo)  
7-m 

and depends on p. The boundary conditions given by (2.10) can be expressed in 
similarity variables as 

fi(0) = 0 =f;(O), f ; ( r )  z - k y  as ~-+co. (3.9) 

4. Solution of the differential equations 
Equation (3.7) has been solved numerically by Cooke (1966) and by us in- 

dependently. We programmed the problem for the Sirius computer at  the 
National Aeronautical Laboratory, Bangalore, using a Runge-Kutta procedure 
with Gill’s improvement. The basic Falkner-Skan solutions were taken from the 
tables of Smith (1954), and a Lagrangian interpolation scheme with six points 

\ P  
r\ 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 

2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 

4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 

6.0 
6.2 
6.4 
6.6 
6.8 

- 0.19 

0~0000 
0.2733 
0.5918 
0.9572 
1.3690 
1.8240 
2.3149 
2.8303 
3.3533 
3-8628 

4.3343 
4.7429 
5-0666 
5-2902 
5.4090 
5.4300 
5.3718 
5.2611 
5.1285 
5.0024 

4.9060 
4.8536 
4.8517 
4.8990 
4.9896 
5.1151 
5.2670 
5.4375 
5.6120 
5.8102 

6.0050 
6.2024 
6.4011 
6.6006 
6.8000 

- 0.16 

0~0000 
0.2455 
0.5293 
0.8520 
1.2114 
1.6025 
2.0164 
2.4404 
2.8581 
3.2508 

3.5998 
3.8890 
4-1513 
4.2544 
4.3345 
4.3625 
4.3577 
4.3412 
4.3321 
4.3449 

4.3880 
4.4645 
4.5726 
4.7078 
4.8645 
5.0370 
5.2204 
5.4107 
5.6054 
5.8025 

6.0011 
6.2004 
6.4000 
- 
- 

- 0.14 

0~0000 
0.2527 
0.5403 
0.8625 
1.2164 
1.5959 
1.9915 
2.3899 
2.7751 
3.1300 

3.4386 
3.6886 
3.8744 
3.9976 
4.0678 
4.1003 
4.1 135 
4.1255 
4.1511 
4.2006 

4.2786 
4.3855 
4.5182 
4.6721 
4.8421 
5.0236 
5.2127 
5.4066 
5.6033 
5.8014 

6.0006 
6.2002 
6.4000 
- 

- 

- 0.10 

0~0000 
0.2687 
0.5664 
0.8916 
1.2400 
1.6044 
1.9740 
2.3359 
2.6753 
2.9783 

3.2337 
3.4351 
3.5827 
3.6834 
3.7493 
3.7956 
3.8377 
3.8889 
3.9587 
4.0517 

4.1691 
4.3088 
4.4669 
4.6395 
4.8223 
5.0120 
5.2063 
5.4032 
5.6015 
5.8006 

6.0002 
6.2000 
- 
- 
- 

0 

0~0000 
0.2987 
0.6148 
0.9447 
1.2821 
1.6184 
1.9430 
2.2450 
2.5144 
2.7442 

2.9316 
3.0788 
3,1930 
3.2844 
3.3651 
3.4464 
3.5374 
3.6441 
3.7690 
3.9121 

4.0711 
4,2433 
4.4252 
4.6141 
4.8076 
5.0039 
5.2019 
5.4009 
5.6004 
5.8000 
- 

- 
- 

- 
- 

0.4 

0~0000 
0.3477 
0.6837 
1.0012 
1.2936 
1.5560 
1.7861 
1-9843 
2.1539 
2.3010 

2.4332 
2.5585 
2-6841 
2.8158 
2.9571 
3.1096 
3.2734 
3.4471 
3.6290 
3.8171 

4.0097 
4.2053 
4.4027 
4.6013 
4.8007 
5.0003 
5.2000 
- 
- 

- 

- 
- 
- 

- 

- 

1.0 

0.0000 
0.3673 
0.6970 
0.9837 
1.2276 
1.4339 
1-6102 
1.7659 
1.9100 
2.0506 

2.1938 
2.3436 
2-5020 
2.6696 
2.8009 
3.0287 
3.2173 
3.4100 
3.6056 
3.8030 

4-0015 
4-2008 
4.4003 
4.6001 
4.7999 
5.0000 

__ 
- 
- 

__ 

- 
- 

- 

- 
- 

2.0 

0~0000 
0.3733 
0.6820 
0.9289 
1.1279 
1.2957 
1.4477 
1.5953 
1.7462 
1.9044 

2.0714 
2.2468 
2.4295 
2.6179 
2.8104 
3.0058 
3.2031 
3.4016 
3.6009 
3.8003 

4.000 1 
4.2000 
- 

- 
- 
- 
- 

-_ 
- 

- 

__ 
- 

- 

- 

- 

TABLE 1. Values of -fl(~)/k for selected values of the Falkner-Skan parameter p 
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was employed to obtain intermediate values at  intervals of A?,I = 0.05. To satisfy 
the boundary conditions (3.9), two of which are given at  ?,I = 0 and the third at 
7 = a, we computed two different solutions of (3.7) assuming arbitrary values 
forf'i(0). Neither of these solutions will in general satisfy the boundary condition 
at q = co, but one can always find a suitable linear combination which does so, 
this being admissible as (3.7) is linear. 

61 - 
5 -  

- 
4 -  

- 
&? 
2 
P 3 -  '< 
I 

2 -  

1 -  

B =  -0.19 / 

i 
0 1 2 3 4 5 6 7 

II 
FIGURE 1. Change in velocity profile due to surface curvature for selected values of p. 

4% = A w + e m ) .  

The solutions so obtained are presented? in table 1 as,f;(v) vs. ?,I for certain 
selected values of /3; figure 1 shows a few typical velocity profiles. The results are 
believed to be correct to four figures, but errors of a few units in the fourth place 
are possible. 

For all values of p for which equation (3.7) was solved, the effect of the curva- 
ture on the skin friction, displacement thickness and momentum thickness was 
also computed; the results are given in table 2 in the form of certain coefficients 
defined as follows. The local skin friction coefficient and Reynolds number are, 
respectively, 

where 7, is the wall shear stress. The increment in cf due to curvature is then given 

cf = T,/&P( U,, U")', R, = Uosx/@, 

by RtAcf = [2(m+ 1)]*&(0). (4.1) 

t More detailed tables, and an approximate method for solvbg the equations, will be 
found in Report AE 164A of the Department of Aeronautical Engineering, Indian Institute 
of Science. 

13 Fluid Mech. 29 
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We define the non-dimensional displacement and momentum thicknesses by 
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P 
- 0.1988 
- 0.195 
- 0.19 
- 0.185 
- 0.18 

- 0.16 
- 0.14 
- 0.10 
- 0.05 

0 

0.1 
0.2 
0.4 
0.6 
0.8 

1 .o 
1.2 
1.6 
2.0 

m 

- 0.09042 
- 0.08884 
- 0.08676 
- 0.08466 
- 0.08257 

- 0.07407 
- 0.06542 
- 0.04762 
- 0.02439 

0 

0.05263 
0.11111 
0.25 
0.42857 
0.66667 

1 .o 
1.5 
4.0 
co 

-~ 
k 

6.244 
1.5714 
1.2572 
1.1477 
1.1343 

1.1340 
1.1782 
1.2715 
1.3691 
1.4469 

1.5630 
1.6456 
1.7561 
1.8315 
1.8766 

1.9132 
1.9414 
1.9819 
2.0092 

- __- 
ks 

8.416 
2.1212 
1.6991 
1.5529 
1.5365 

1.5433 
1.6108 
1.7548 
1.9124 
2.0462 

2.2679 
2.4531 
2.7766 
3.0958 
3.4261 

3.8264 
4.3412 
6.2674 

co 

34.11 -17.52 
8.922 -4,840 
6'635 -3'581 
5'603 -2.968 
5'125 -2.651 

4.002 - 1.840 
3.452 -1.419 
2.837 -0.843 
2.398 -0.388 
2.109 -0'096 

1.731 0.268 
1.486 0.476 
1.173 0.681 
0.987 0.757 
0.839 0.776 

0.737 0.772 
0.657 0.752 
0.542 0.702 
0.461 0.662 

TABLE 2. Change in skin friction coefficient, displacement 
thickness and momentum thickness due to  curvature 

where it is easily shown that 

TT r m  

(4.2 a). 

(4 .2b )  

Table 2 lists values of the quantities (4.1), (4.2a) and (4.2b); figure 2 shows the 
skin friction data graphically. 

For those values of p for which computations have been made both by us and 
by Cooke, the values offi(0) differ at  the most by one unit in the last place. For 
p = 1, Van Dyke (1964) givesf;(O)/k = - 1.91, in agreement with our value of 
- 1.9132. A striking feature of figure 2 is that as p approaches the critical value 
( = - 0.198838..  . according to Smith) at which the Falkner-Skan profile shows 
separation, Ifr(0) I seems to increase very rapidly. This suggests that curvature 
of the surface may have a strong influence on separation. 
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Before the computer results were available, an approximate calculation made 
for the case ,8 = 0 (Ojha 1964), using the method of Meksp (1961), gave 
f ; (O) /k  2: - 1.44, in good agreement with the computer result. 

For all values of p, these results show a decrease in skin friction on the convex 
side of the surface, and confirm a trend first predicted by Murphy (1953). How- 
ever, there are numerical differences; and a critical assessment of Murphy’s and 
other previous work, together with a comparison with present results and 
analysis, is given in the next section. 

P 
FIGURE 2. Change in skin friction due to surface curvature as a function of the pressure 

gradient parameter p. The curve is faired through the points listed in table 2. 

5. Discussion 5.1. Comparison with previous work 

The dependence of the skin friction on the surface curvature parameter has been 
studied previously by various workers. Their results for the case of flow without 
any pressure gradient are presented as c,R$ us. ke in figure 3, and the slopes of 
these curves a t  the origin are listed in table 3. Even for this single case, there are 
many discrepancies, some of which have been attributed to inadequate numerical 
computation; but the present work indicates that there are deeper reasons involv- 
ing the formulation of the problem. The following brief remarks on each of the 
analyses indicate the reasons for the observed discrepancies. 

Murphy (1953, 1965) uses the same co-ordina,te system as we do. In  his earlier 
work, he first formulates the problem for ‘large’ curvatures (i.e. ks = O ( l ) ) ,  al- 
though ultimately he retains only first-order terms in a parameter A which is 
proportional to our ks. It is important to note that for large curvatures, the 
surface will appear sharp to the outer flow; hence the inviscid surface velocity 
will in general tend to infinity in the limit-a fact which does not seem to have 
been considered by Murphy in writing his boundary conditions. Murphy in the 
same paper (1 953) obtains a simplified set of equations stated to be valid only for 

13-2 
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moderate curvature. A comparison of these equations with those obtained by us 
here shows that while he includes a higher order term in the second momentum 
equation, he has not included similar higher order terms in the continuity and 

Yen & Toba 

Concave 

I 

-0.08 - 0.04 0 004 008 
Ls 

FIGURE 3. Comparisonof previous work with present results for the effectof surface curvature 
on skin friction in zero pressure gradient. The symbol 0 refers to the results of Schultz- 
G m o w  & Breuer (1965). 

Source 

Murphy (1953) 2.48 
Tani (1954) 2.05 
Yen & Toba (1961) - 1.38 
Hayasi (1963) 2.05 
Murphy (1965) 1.41 
Schultz-Grunow & Breuer (1965) 2.04 
Present work 2.045 

TABLE 3. Rate of change of skin friction with surface curvature in the 
absence of pressure gradient, as given by various workers 

first momentum equations. Thus, even his analysis for moderate curvature does 
not appear to be consistent to the order considered. Unfortunately, his later 
work (Murphy 1965) is still open to similar objections. Again, he does not split 
his solutions into zeroth and higher order terms as we do, although his computa- 
tions are made only for small values of a parameter Q, equal to our ka. If his 
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dependent variables are expanded as a series in Q, we obtain to O( 1 )  the classical 
boundary-layer equations (2 .6) ;  the next set of equations, to O(Ll), show, on 
comparison with ours, that he omits the right-hand side in the continuity equa- 
tion ( 2 . 7 a ) ,  and the terms proportional to K y  in ( 2 . 7 ~ ) .  All these terms are O(E)  
or O(Ll), and hence not negligible in comparison with the other terms of (2 .7)  
which are of the same order and are included by Murphy. A similar analysis of 
Murphy’s final similarity equation reveals that certain terms proportional to 7 
are missing. For example, in the simplest case of /3 = 0, the term kqfofi  on the 
right of (3 .7)  does not appear in Murphy’s equation, though it is clearly of the 
same order as the other terms. 

Yen & Toba (1961) adopt a different co-ordinate system, consisting of stream- 
lines and their orthogonal trajectories. In contrast with the trend of our and 
Murphy’s results, they find an increase of skin friction on the convex side. (See 
also Murphy 1962; Yen & Toba 1962.) The discrepancy seems again to be due 
at  least in part to inconsistent approximations. Their analysis involves, in addi- 
tion to the equation of motion, the Gauss equation connecting the curvatures of 
the co-ordinate lines. While the first higher order terms seem to have beenincluded 
in the equations of motion, Yen & Toba’s simplified Gauss equation omits terms 
of the same order, leading again to corresponding inconsistencies in the final 
equation. 

Hayasi (1963) attributes the differences in the results of Murphy and of Yen 
& Toba to inadequate numerical computation. He based his own work on Yen & 
Toba’s equations, and so the above remarks apply equally to his work. 

As we stated earlier, any more general analysis valid also for larger curvatures 
should reduce to the correct equations also in the limit of moderate curvature 
(i.e. KS+ 0). But as the analyses mentioned above do not consistently include 
all terms of the same order even in the limit, they would seem to be deficient at  
large curvatures as they are at  moderate curvatures. 

Another recent contribution to the subject is that of Schultz-Grunow & 
Breuer (1965)’ who formulate a non-linear equation to describe the effects of 
curvature. Their equations contain all the terms of O( 1)  and O(B)  present in Van 
Dyke’s and our equations, and include in addition (only) one viscous term of 
O(G);  but the exact metric factor is preserved in all the terms kept. They further 
assume that the potential outer flow has no cross velocity (i.e. V = 0 ) ,  which is 
permissible to O(s) as the flow can then be split into curvature and displacement 
effects (see $2). Thus, their formulation is certainly correct to O(E)  and hence is 
an improvement over Murphy’s work, though to this order it is unnecessarily 
complicated; its validity to higher orders is questionable, because of the assump- 
tions mentioned above. They only consider the flow with no pressure gradient; 
their value for d(c ,R$) /d(ke) ,  deduced by us from their data for k = k 24 (0.02),  
is in good agreement with our results. 

Rather similar comments apply to the work of Massey & Clayton (1965)’ who 
also construct a non-linear equation which agrees with ours to the two lowest 
orders; their value for d(c,R$)/d(ks) also shows close agreement. They include in 
their analysis a consideration of the displacement effect by a procedure which 
amounts (in the terminology of this work) to matching the outer limit of the 
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inner solution, u,(y-+co), with U,( Y = 6"). This is clearly an oversimpli- 
fication.? 

It is clear from the above that all the theories mentioned here are strictly 
entitled only to discuss the slope d(c,l l$)/d(ks) a t  the origin. There seems to be no 
justification for attaching any significance to the curvature of the curves shown 
in figure 3. 

The work of Tani (1954), on the other hand, stands out as a sound analysis. 
Tani considered only the flow without pressure gradient, and used a small pertur- 
bation scheme. Though he did not use the method of matched asymptotic expan- 
sions, he obtained the correct equations and boundary conditions, and his final 
result for the skin friction coefficient (see table 3), agrees well with our result. 
The present formulation is, however, thought to be more systematic, and con- 
siders also flows with pressure gradients. 

Roddum Nurasimhu and 1.9. K.  Ojhu 

5.2. Concluding remarks 
Like any similarity solution, the present analysis applies only to a special family 
of surfaces and pressure distributions. To tackle the problem when these are 
arbitrarily given, a Pohlhausen-type procedure to solve the higher order equa- 
tions (2.9) can be adopted. Some preliminary calculations using this technique 
confirm the trend of the results obtained by the similarity analysis; these will be 
reported in the near future. 

In  conclusion, two comments need to be made. First, the reduction in skin 
friction due to convex curvature implies that separation is hastened. Present 
results show that even in the absence of a pressure gradient, the skin friction 
vanishes if kc = 0.328, or equivalently if K6* = 0.40, using the Blasius value for 
the displacement thickness 6". Of course it is not to be expected that the present 
analysis would be valid right up to separation, but it is interesting that the K6* 
required for separation is not large; it certainly seems suggestive. 

Secondly, it must be emphasized that the effect of curvature on laminar flows 
in general will depend on the constraints on the flow (or in other words on the 
outer boundary condition). An examination of the sign of the terms appearing in 
the higher equations (e.g. (3 .7)  withp = 0) suggests that the dominant reason for 
the reduction of skin friction on the convex side is that in the irrotational outer 
flow, the velocity tends to decrease away from the surface. Where this effect is 
absent, the change in skin friction may be quite different. We may cite the 
example of cylindrical Couette flow, with inner cylinder at  rest and outer cylinder 
rotating. The skin friction on the convex surface of the inner cylinder is in this 
case more than in plane Couette flow with same gap width and velocity difference. 

We thank Prof. S. Dhawan for useful discussions and for his interest in this 
work. Prof. J. C. Cooke, of the Royal Aircraft Establishment, has very generously 

f Incidentally, there do not seem to be any strict Similarity solutions including displace- 
ment effects. It is easily shown that for the Blasius solution the displacement speed UI(lY, 0) 
is zero on a flat plate. However, as this speed is to be found by integrating the contributions 
from a source distribution of strength V,(X, 0) along the surface, it is clear that U,(X, 0) will 
depend on the geometry of the surface and will not necessarily be zero on thc curved surface 
with zero pressure gradient in our similarity solutions. 
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made available to us the results of some of his unpublished computations, and we 
acknowledge a useful correspondence with him. Mr S. S. Krishnamurthy has 
been of considerable assistance t o  us in the compu%ations. 

Some of the work reported here formed part of the thesis submitted by S. K. 0. 
for the doctor's degree at the Indian Institute of Science in 1964. 

R E F E R E N C E S  

COOKE, J. C. 1966 Private communication. 
HAYASI, N. 1963 A.I.A.A. J .  1, 914. 
KREYSZIG, E. 1953 Acta Math. 89, 107. 
MASSEY, B. S. & CLAYTON, B. R .  1965 Trans. A.S.M.E., J .  Basic Eng. 87 D, 483. 
MEKSYN, D. 1961 New Methods in Laminar Boundary Layer Theory. Oxford: Pergamon 

Press. 
MURPHY, J. S. 1953 J .  Aero. Sci. 20, 338. 
MURPHY, J. S. 1962 J .  Aero Space. Sci. 29, 366. 
MURPHY, J. S. 1965 A.I.A.A. J .  3, 2043. 
OJHA, S. K. 1964 Ph.D. Thesis, I.I.Sc., Bangalore, India. 
ROTT, N. & LENARD, M. 1959 J .  Aero. Space Sci. 26, 542. 
SCHULTZ-GRUNOW, F. & BREUER, W. 1965 Laminar boundary layers on cambered walls. 

In Basic Developments in Fluid Dynamics (ed. M. Holt). New York and London: 
Academic Press. 

SMITH, A. M. 0. 1954 IAS Fairchild Fund preprint, FF-10. 
TANI, I. 1949 J .  Japan. SOC. Mech. Engineers, 52, 476. 
TANI, I. 1954 J .  Japan SOC. Mech. Engineers, 57, 596. 
VAN DYKE, M. 1962 J .  Fluid Mech. 14, 161. 
VAN D m ,  M. 1964 J .  Fluid Mech. 19, 145. 
YEN, K. T. & TOBA, K. 1961 J .  Aero. Space Sci. 28, 877. 
YEN, K. T. & TOBA, K. 1962 J .  Aero. Space Sci. 29, 367. 


